The phrase ‘big data’ may have largely gone out of fashion, but the concept of storing and processing all relevant data continues to be important for enterprises seeking to be more data-driven. Doing so requires analytic data platforms capable of storing and processing data in multiple formats and data models. This will be an important focus for the forthcoming Data Platforms Buyer’s Guide 2024.
Read More
Topics:
Analytics,
Business Intelligence,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data,
AI and Machine Learning
I recently discussed how fashion has a surprisingly significant role to play in the data market as various architectural approaches to data storage and processing take turns enjoying a phase in the limelight. Pendulum swing is a theory of fashion that describes the periodic movement of trends between two extremes, such as short and long hemlines or skinny and baggy/flared trousers. Pendulum swing theory is similarly a factor in data technology trends, with an example being the oscillation...
Read More
Topics:
Analytics,
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data,
AI and Machine Learning
I previously described how Oracle had positioned its database portfolio to address any and all data platform requirements. The caveat to that statement at the time was that any organization wanting to take advantage of the company’s flagship Oracle Autonomous Database could only do so using Oracle Cloud Infrastructure (OCI) cloud computing service, their own datacenter or a hybrid cloud environment. The widespread popularity of Oracle Database and the advanced automation capabilities delivered...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Management,
Data,
Digital Technology,
data platforms,
Analytics & Data,
operational data platforms,
Analytic Data Platforms
I previously wrote about the challenge facing distributed SQL database providers to avoid becoming pigeonholed as only being suitable for a niche set of requirements. Factors including performance, reliability, security and scalability provide a focal point for new vendors to differentiate from established providers and get a foot in the door with customer accounts. Expanding and retaining those accounts is not necessarily easy, however, especially as general-purpose data platform providers...
Read More
Topics:
Analytics,
Cloud Computing,
Data,
Digital Technology,
Analytics & Data,
Streaming Data & Events,
Analytic Data Platforms,
AI and Machine Learning
Alteryx was founded in 1997 and initially focused on analyzing demographic and geographically organized data. In 2006, the company released its eponymous product that established its direction for what the product is today. In 2017, it went public in an IPO on the NYSE. At the time of the IPO, Alteryx was focusing much of its marketing efforts on the data preparation market, particularly to support Tableau. Throughout this time though, Alteryx offered much more than data preparation. As a...
Read More
Topics:
business intelligence,
Analytics,
data operations,
Analytics & Data,
AI and Machine Learning,
Analytic Operations
I previously discussed the trust and accuracy limitations of large language models, suggesting that data and analytics vendors provide guidance about potentially inaccurate results and the risks of creating a misplaced level of trust. In the months that have followed, we are seeing some clarity from these vendors about the approaches organizations can take to increase trust and accuracy when developing applications that incorporate generative AI, including fine-tuning and prompt engineering. It...
Read More
Topics:
Analytics,
Business Intelligence,
Data,
Digital Technology,
natural language processing,
data operations,
Analytics & Data,
operational data platforms,
Analytic Data Platforms
In my past perspectives, I’ve written about the evolution from data at rest to data in motion and the fact that you can’t rely on dashboards for real-time analytics. Organizations are becoming more and more event-driven and operating based on streaming data. As well, analytics are becoming more and more intertwined with operations. More than one-fifth of organizations (22%) describe their analytics workloads as real time in our Data and Analytics Benchmark Research and nearly half (47%) of...
Read More
Topics:
Analytics,
Business Intelligence,
Data,
Digital Technology,
Streaming Analytics,
Analytics & Data,
Streaming Data & Events
I previously described how Databricks had positioned its Lakehouse Platform as the basis for data engineering, data science and data warehousing. The lakehouse design pattern provides a flexible environment for storing and processing data from multiple enterprise applications and workloads for multiple use cases. I assert that by 2025, 8 in 10 current data lake adopters will invest in data lakehouse architecture to improve the business value generated from the accumulated data.
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Management,
Data,
Digital Technology,
Analytics & Data,
Analytic Data Platforms,
AI and Machine Learning
I am happy to share insights gleaned from our latest Buyers Guide, an assessment of how well vendors’ offerings meet buyers’ requirements. The Ventana Research 2023 Mobile Analytics Buyers Guide is the distillation of a year of market and product research by Ventana Research. Drawing on our Benchmark Research, we apply a structured methodology built on evaluation categories that reflect the real-world criteria incorporated in a request for proposal to Analytics vendors supporting the spectrum...
Read More
Topics:
Analytics,
Mobile Analytics,
Analytics & Data
The 2023 Ventana Research Buyers Guide for Mobile Analytics research enables me to provide observations about how the market has advanced.
Read More
Topics:
Analytics,
Mobile Analytics,
Analytics & Data