Analytics software is used by business analysts and decision-makers to facilitate the generation of insights from data. It encompasses business intelligence and decision intelligence software, including reports and dashboards as well as embedded analytics and the development of intelligent applications infused with the results of analytic processes. Analytics software enables enterprises to improve business outcomes by operating more efficiently, accelerating product development and enhancing...
Read More
Topics:
Analytics,
AI,
Analytics & Data,
Generative AI
I recently wrote about the development, testing and deployment of data pipelines as a fundamental accelerator of data-driven strategies. As I explained in the 2023 Data Orchestration Buyers Guide, today’s analytics environments require agile data pipelines that can traverse multiple data-processing locations and evolve with business needs.
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
Enterprises are increasingly recognizing the need to streamline operations for efficiency, agility and innovation. This has led to various “operations” or “Ops” initiatives, each focusing on a specific aspect of enterprise IT. From software development and data analytics to IT and cloud management, these Ops groups are transforming the way enterprises operate and compete.
Read More
Topics:
Analytics,
Cloud Computing,
Digital Technology,
data operations,
digital finance,
Digital Security,
Observability,
Analytic Operations,
DevOps and Platforms,
ITOps,
CloudOps,
Machine Learning Operations,
MLOps,
SecOps,
ProjectOps,
AIOps,
NetOps,
DevSecOps,
SecFinOps
I wrote recently about the role that data intelligence has in enabling enterprises to facilitate data democratization and the delivery of data as a product. Data intelligence provides a holistic view of how, when, and why data is produced and consumed across an enterprise, and by whom. This information can be used by data teams toensure business users and data analysts are provided with self-service access to data that is pertinent to their roles and requirements. Delivering data as a product...
Read More
Topics:
Analytics,
Data Ops,
data operations,
data platforms,
Analytics & Data,
AI and Machine Learning,
GenAI,
Data Intelligence
Data and analytics have become increasingly important to all aspects of business. The modern data and analytics stack includes many components, which creates challenges for enterprises and software providers alike. As my colleague Matt Aslett points out, a better term might be modern data and analytics smorgasbord. There are arguments for and against using an assortment of tools versus a consolidated platform. For example, purchasing, integrating and deploying a variety of tools can be complex....
Read More
Topics:
Analytics,
AI,
data operations,
Analytics & Data,
Generative AI,
Data Intelligence
The development, testing and deployment of data pipelines is a fundamental accelerator of data-driven strategies, enabling enterprises to extract data from the operational applications and data platforms designed to run the business and load, integrate and transform it into the analytic data platforms and tools used to analyze the business. As I explained in our recent Data Pipelines Buyers Guide, data pipelines are essential to generating intelligence from data. Healthy data pipelines are...
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
As enterprises seek to increase data-driven decision-making, many are investing in strategic data democratization initiatives to provide business users and data analysts with self-service access to data across the enterprise. Such access has long been a goal of many enterprises, but few have achieved it. Only 15% of participants in Ventana Research’s Analytics and Data Benchmark Research say their organization is very comfortable allowing business users to work with data that has not been...
Read More
Topics:
Analytics,
data operations,
Analytics & Data,
AI and Machine Learning,
Data Intelligence,
Data Products,
Data Democratization
Cloud computing has had an enormous impact on the analytics and data industry in recent decades, with the on-demand provisioning of computational resources providing new opportunities for enterprises to lower costs and increase efficiency. Two-thirds of participants in Ventana Research’s Data Lakes Dynamic Insightsresearch are using a cloud-based environment as the primary data platform for analytics.
Read More
Topics:
Analytics,
AI,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
I have previously written about the impact of intelligent operational applications on the requirements for data platforms. Intelligent applications are used to run the business but also deliver personalization, recommendations and other features generated by machine learning and artificial intelligence. As such, they require a combination of operational and analytic processing functionality. The emergence of these intelligent applications does not eradicate the need for separate analysis of...
Read More
Topics:
Analytics,
Artificial intelligence,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning
The increasing importance of intelligent operational applications driven by artificial intelligence (AI) is blurring the lines that have traditionally divided the requirements between operational and analytic data platforms. Operational data platforms have traditionally been deployed to support applications targeted at business users and decision-makers to run the business, with analytic data platforms typically supporting applications used by data and business analysts to analyze the business.
Read More
Topics:
embedded analytics,
Analytics,
Cloud Computing,
Analytics & Data,
operational data platforms,
Analytic Data Platforms