As I have previously explained, we expect an increased demand for intelligent operational applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. These systems rely on the analysis of data in the operational data platform to accelerate worker decision-making or improve customer experience.
Read More
Topics:
Analytics,
Data,
Digital Technology,
Streaming Analytics,
Analytics & Data,
Streaming Data & Events,
operational data platforms,
AI and Machine Learning
Organizations increasingly rely on real-time analytics to make informed decisions and stay competitive in today’s data-driven business landscape. As the complexity of data grows with the continuous addition of diverse sources, customers and workers alike expect real-time responsiveness. Accelerated query performance is crucial to process and extract valuable insights from data in a timely manner. Traditional analytics applications are often insufficient for managing the scale, velocity and...
Read More
Topics:
Data Management,
Data,
data operations,
Streaming Data & Events,
Analytic Data Platforms
I have written recently about the increasing importance of managing data in motion and at rest as the use of streaming data by enterprise organizations becomes more mainstream. While batch-based processing of application data has been a core component of enterprise IT architecture for decades, streaming data and event processing have often been niche disciplines typically reserved for organizations with the highest-level performance requirements. That has changed in recent years, driven by an...
Read More
Topics:
Data,
Streaming Data & Events
Success with streaming data and events requires a more holistic approach to managing and governing data in motion and data at rest. The use of streaming data and event processing has been part of the data landscape for many decades. For much of that time, data streaming was a niche activity, however, with standalone data streaming and event-processing projects run in parallel with existing batch-processing initiatives, utilizing operational and analytic data platforms. I noted that there has...
Read More
Topics:
Analytics,
Data,
Digital Technology,
Streaming Analytics,
Analytics & Data,
Streaming Data & Events,
operational data platforms,
Analytic Data Platforms
Ventana Research recently announced its 2023 Market Agenda for Data, continuing the guidance we have offered for two decades to help organizations derive optimal value and improve business outcomes.
Read More
Topics:
Cloud Computing,
Data Governance,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data,
Streaming Data & Events,
operational data platforms,
Analytic Data Platforms
Ventana Research uses the term “data pantry” to describe a method of data storage (and the technology and process blueprint for its construction) created for a specific set of users and use cases in business-focused software. It’s a pantry because all the data one needs is readily available and easily accessible, with labels that are immediately recognized and understood by the users of the application. In tech speak, this means the semantic layer is optimized for the intended audience. It is...
Read More
Topics:
Continuous Planning,
Business Intelligence,
Data Management,
Business Planning,
Data,
Financial Performance Management,
Enterprise Resource Planning,
continuous supply chain,
data operations,
digital finance,
profitability management,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
I have previously written about growing interest in the data lakehouse as one of the design patterns for delivering hydroanalytics analysis of data in a data lake. Many organizations have invested in data lakes as a relatively inexpensive way of storing large volumes of data from multiple enterprise applications and workloads, especially semi- and unstructured data that is unsuitable for storing and processing in a data warehouse. However, early data lake projects lacked structured data...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
Streaming Data & Events,
Analytic Data Platforms,
AI and Machine Learning
Ventana Research’s Data Lakes Dynamics Insights research illustrates that while data lakes are fulfilling their promise of enabling organizations to economically store and process large volumes of raw data, data lake environments continue to evolve. Data lakes were initially based primarily on Apache Hadoop deployed on-premises but are now increasingly based on cloud object storage. Adopters are also shifting from data lakes based on homegrown scripts and code to open standards and open...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
data operations,
Analytics & Data,
Streaming Data & Events,
operational data platforms,
Analytic Data Platforms,
AI and Machine Learning
Earlier this year I described the growing use-cases for hybrid data processing. Although it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads respectively, there is increased demand for intelligent operational applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. There are multiple data platform approaches to...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data,
Streaming Data & Events,
operational data platforms,
Analytic Data Platforms,
AI and Machine Learning
I recently wrote about the need for organizations to take a holistic approach to the management and governance of data in motion alongside data at rest. As adoption of streaming data and event processing increases, it is no longer sufficient for streaming data projects to exist in isolation. Data needs to be managed and governed regardless of whether it is processed in batch or as a stream of events. This requirement has resulted in established data management vendors increasing their focus on...
Read More
Topics:
Big Data,
Cloud Computing,
Data Governance,
Streaming Analytics,
Streaming Data & Events