The shift from on-premises server infrastructure to cloud-based and software-as-a-service (SaaS) models has had a profound impact on the data and analytics architecture of many organizations in recent years. More than one-half of participants (59%) in Ventana Research’s Analytics and Data Benchmark research are deploying data and analytics workloads in the cloud, and a further 30% plan to do so. Customer demand for cloud-based consumption models has also had a significant impact on the products...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data Management,
Data,
natural language processing,
data operations,
Analytics & Data,
operational data platforms,
Analytic Data Platforms,
AI and Machine Learning
There is always space for innovation in the data platforms sector, and new vendors continue to emerge at regular intervals with new approaches designed to serve specialist data storage and processing requirements. Factors including performance, reliability, security and scalability provide a focal point for new vendors to differentiate from established vendors, especially for the most demanding operational or analytic data platform requirements. It is never easy, however, for developers of new...
Read More
Topics:
Cloud Computing,
Data,
operational data platforms
Ventana Research uses the term “data pantry” to describe a method of data storage (and the technology and process blueprint for its construction) created for a specific set of users and use cases in business-focused software. It’s a pantry because all the data one needs is readily available and easily accessible, with labels that are immediately recognized and understood by the users of the application. In tech speak, this means the semantic layer is optimized for the intended audience. It is...
Read More
Topics:
Continuous Planning,
Business Intelligence,
Data Management,
Business Planning,
Data,
Financial Performance Management,
Enterprise Resource Planning,
continuous supply chain,
data operations,
digital finance,
profitability management,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
The technology industry has established itself as a pivotal force in its ability to help organizations become more intelligent and automated. But doing so has required a journey of epic proportions for most organizations that have had to endure a transition of competencies and skills that was, in many places, transitioned to consulting firms who were hired appropriately to manage changes. Unfortunately, this step led, in many cases, to an extended focus on digital transformation rather than the...
Read More
Topics:
Customer Experience,
Human Capital Management,
Marketing,
Office of Finance,
Analytics,
Data,
Digital Technology,
Operations & Supply Chain,
Digital Business,
Office of Revenue
Earlier this year, I wrote about the increasing importance of data observability, an emerging product category that takes advantage of machine learning (ML) and Data Operations (DataOps) to automate the monitoring of data used for analytics projects to ensure its quality and lineage. Monitoring the quality and lineage of data is nothing new. Manual tools exist to ensure that it is complete, valid and consistent, as well as relevant and free from duplication. Data observability vendors,...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data Management,
Data,
data operations
One of the most significant considerations when choosing an analytic data platform is performance. As organizations compete to benefit most from being data-driven, the lower the time to insight the better. As data practitioners have learnt over time, however, lowering time to insight is about more than just high-performance queries. There are opportunities to improve time to insight throughout the analytics life cycle, which starts with data ingestion and integration, includes data preparation...
Read More
Topics:
Business Intelligence,
Data,
data operations,
Analytic Data Platforms,
AI and Machine Learning
Organizations are increasingly utilizing cloud object storage as the foundation for analytic initiatives. There are multiple advantages to this approach, not least of which is enabling organizations to keep higher volumes of data relatively inexpensively, increasing the amount of data queried in analytics initiatives. I assert that by 2024, 6 in ten organizations will use cloud-based technology as the primary analytics data platform, making it easier to adopt and scale operations as necessary.
Read More
Topics:
Teradata,
Data Governance,
Data Management,
Data,
data operations,
operational data platforms,
Analytic Data Platforms,
Object storage,
Vantage platform
Almost all organizations are investing in data science, or planning to, as they seek to encourage experimentation and exploration to identify new business challenges and opportunities as part of the drive toward creating a more data-driven culture. My colleague, David Menninger, has written about how organizations using artificial intelligence and machine learning (AI/ML) report gaining competitive advantage, improving customer experiences, responding faster to opportunities and threats, and...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
Analytics & Data,
Analytic Data Platforms,
AI and Machine Learning
I have previously written about growing interest in the data lakehouse as one of the design patterns for delivering hydroanalytics analysis of data in a data lake. Many organizations have invested in data lakes as a relatively inexpensive way of storing large volumes of data from multiple enterprise applications and workloads, especially semi- and unstructured data that is unsuitable for storing and processing in a data warehouse. However, early data lake projects lacked structured data...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
Streaming Data & Events,
Analytic Data Platforms,
AI and Machine Learning