As I noted when joining Ventana Research, the range of options faced by organizations in relation to data processing and analytics can be bewildering. When it comes to data platforms, however, there is one fundamental consideration that comes before all others: Is the workload primarily operational or analytic? Although most database products can be used for operational or analytic workloads, the market has been segmented between products targeting operational workloads, and those targeting...
Read More
Topics:
business intelligence,
Analytics,
Data,
data lakes,
data operations,
data platforms,
AI and Machine Learning
Breaking into the database market as a new vendor is easier said than done given the dominance of the sector by established database and data management giants, as well as the cloud computing providers. We recently described the emergence of a new breed of distributed SQL database providers with products designed to address hybrid and multi-cloud data processing. These databases are architecturally and functionally differentiated from both the traditional relational incumbents (in terms of...
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
Digital transformation,
Digital Business,
data platforms,
Analytics & Data
It has been clear for some time that future enterprise IT architecture will span multiple cloud providers as well as on-premises data centers. As Ventana Research noted in the market perspective on data architectures, the rapid adoption of cloud computing has fragmented where data is accessed or consolidated. We are already seeing that almost one-half (49%) of respondents to Ventana Research’s Analytics and Data Benchmark Research are using cloud computing for analytics and data, of which 42%...
Read More
Topics:
Data,
data lakes,
data operations,
data platforms
Organizations have become more agile and responsive, in part, as a result of being more agile with their information technology. Adopting a DevOps approach to application deployment has allowed organizations to deploy new and revised applications more quickly. DataOps is enabling organizations to be more agile in their data processes. As organizations are embracing artificial intelligence (AI) and machine learning (ML), they are recognizing the need to adopt MLOps. The same desire for agility...
Read More
Topics:
business intelligence,
Analytics,
Data Governance,
Data,
Digital Technology,
data operations,
data platforms
Enterprises looking to adopt cloud-based data processing and analytics face a disorienting array of data storage, data processing, data management and analytics offerings. Departmental autonomy, shadow IT, mergers and acquisitions, and strategic choices mean that most enterprises now have the need to manage data across multiple locations, while each of the major cloud providers and data and analytics vendors has a portfolio of offerings that may or may not be available in any given location. As...
Read More
Topics:
Analytics,
Cloud Computing,
Data Governance,
Data Integration,
Data,
Digital Technology,
data lakes,
data operations,
data platforms,
AI and Machine Learning