I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing business intelligence (BI) and data science tools to analyze data in data lakes. Interactive SQL query...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
data lakes,
data operations,
data platforms,
Analytics & Data,
AI and Machine Learning
I previously explained how the data lakehouse is one of two primary approaches being adopted to deliver what I have called a hydroanalytic data platform. Hydroanalytics involves the combination of data warehouse and data lake functionality to enable and accelerate analysis of data in cloud storage services. The term data lakehouse has been rapidly adopted by several vendors in recent years to describe an environment in which data warehousing functionality is integrated into the data lake...
Read More
Topics:
business intelligence,
Analytics,
Data,
data lakes,
data platforms
As I recently described, it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads, albeit with growing demand for hybrid data processing use-cases and functionality. Specialist operational and analytic data platforms have historically been the since preferred option, but there have always been general-purpose databases that could be used for both analytic and operational workloads, with tuning...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
data platforms,
Analytics & Data
I recently wrote about the potential benefits of data mesh. As I noted, data mesh is not a product that can be acquired, or even a technical architecture that can be built. It’s an organizational and cultural approach to data ownership, access and governance. While the concept of data mesh is agnostic to the technology used to implement it, technology is clearly an enabler for data mesh. For many organizations, new technological investment and evolution will be required to facilitate adoption...
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
data operations,
data platforms,
Streaming Data & Events,
AI and Machine Learning
I recently described the use cases driving interest in hybrid data processing capabilities that enable analysis of data in an operational data platform without impacting operational application performance or requiring data to be extracted to an external analytic data platform. Hybrid data processing functionality is becoming increasingly attractive to aid the development of intelligent applications infused with personalization and artificial intelligence-driven recommendations. These...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
data platforms,
Analytics & Data,
AI and Machine Learning
Organizations have been using data virtualization to collect and integrate data from various sources, and in different formats, to create a single source of truth without redundancy or overlap, thus improving and accelerating decision-making giving them a competitive advantage in the market. Our research shows that data virtualization is popular in the big data world. One-quarter (27%) of participants in our Data Lake Dynamic Insights Research reported they were currently using data...
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Streaming Analytics,
AI and Machine Learning
I recently wrote about the importance of data pipelines and the role they play in transporting data between the stages of data processing and analytics. Healthy data pipelines are necessary to ensure data is integrated and processed in the sequence required to generate business intelligence. The concept of the data pipeline is nothing new of course, but it is becoming increasingly important as organizations adapt data management processes to be more data driven.
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
Digital transformation,
data lakes,
data operations,
Digital Business,
data platforms,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
Data governance is an issue that impacts all organizations large and small, new and old, in every industry, and every region of the world. Data governance ensures that an organization’s data can be cataloged, trusted and protected, improving business processes to accelerate analytics initiatives and support compliance with regulatory requirements. Not all data governance initiatives will be driven by regulatory compliance; however, the risk of falling foul of privacy (and human rights) laws...
Read More
Topics:
Analytics,
Data Governance,
Data
I recently described the growing level of interest in data mesh which provides an organizational and cultural approach to data ownership, access and governance that facilitates distributed data processing. As I stated in my Analyst Perspective, data mesh is not a product that can be acquired or even a technical architecture that can be built. Adopting the data mesh approach is dependent on people and process change to overcome traditional reliance on centralized ownership of data and...
Read More
Topics:
Business Continuity,
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
data lakes,
Digital Business,
data platforms,
Analytics & Data