About the Analyst
Matt Aslett
Matt leads the expertise in Digital Technology covering applications and technology that improve the readiness and resilience of business and IT operations. His focus areas of expertise and market coverage include: analytics and data, artificial intelligence and machine learning, blockchain, cloud computing, collaborative and conversational computing, extended reality, Internet of Things mobile computing and robotic automation. Matt’s specialization is in operational and analytical use of data and how businesses can modernize their approaches to business to accelerate the value realization of technology investments in support of hybrid and multi-cloud architecture. Matt has been an industry analyst for more than a decade and has pioneered the coverage of emerging data platforms including NoSQL and NewSQL databases, data lakes and cloud-based data processing. He is a graduate of Bournemouth University.
Many organizations have adopted DataOps to apply agile development, DevOps and lean manufacturing processes to the development, testing, deployment and orchestration of data integration and processing pipelines. The most likely ultimate outcome of these pipelines is the analytics reports and dashboards enterprises rely on to make business decisions.
Read More
Topics:
Analytics,
Analytics & Data,
Data Intelligence
Analytics software is used by business analysts and decision-makers to facilitate the generation of insights from data. It encompasses business intelligence and decision intelligence software, including reports and dashboards as well as embedded analytics and the development of intelligent applications infused with the results of analytic processes. Analytics software enables enterprises to improve business outcomes by operating more efficiently, accelerating product development and enhancing...
Read More
Topics:
Analytics,
AI,
Analytics & Data,
Generative AI
I recently wrote about the development, testing and deployment of data pipelines as a fundamental accelerator of data-driven strategies. As I explained in the 2023 Data Orchestration Buyers Guide, today’s analytics environments require agile data pipelines that can traverse multiple data-processing locations and evolve with business needs.
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
I previously explained how master data management helps provide trust in data, making it one of the most significant aspects of an enterprise’s strategic approach to data management. More recently, I discussed how it has a role to play in accelerating data democratization as part of data intelligence initiatives. Along with data quality, MDM enables organizations to ensure data is accurate, complete and consistent to fulfill operational business objectives. While it is an established and mature...
Read More
Topics:
Product Information Management,
Operations & Supply Chain,
Sustainability Management,
Analytics & Data,
Data Intelligence
I wrote recently about the role that data intelligence has in enabling enterprises to facilitate data democratization and the delivery of data as a product. Data intelligence provides a holistic view of how, when, and why data is produced and consumed across an enterprise, and by whom. This information can be used by data teams toensure business users and data analysts are provided with self-service access to data that is pertinent to their roles and requirements. Delivering data as a product...
Read More
Topics:
Analytics,
Data Ops,
data operations,
data platforms,
Analytics & Data,
AI and Machine Learning,
GenAI,
Data Intelligence
The development, testing and deployment of data pipelines is a fundamental accelerator of data-driven strategies, enabling enterprises to extract data from the operational applications and data platforms designed to run the business and load, integrate and transform it into the analytic data platforms and tools used to analyze the business. As I explained in our recent Data Pipelines Buyers Guide, data pipelines are essential to generating intelligence from data. Healthy data pipelines are...
Read More
Topics:
Analytics,
data operations,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
As enterprises seek to increase data-driven decision-making, many are investing in strategic data democratization initiatives to provide business users and data analysts with self-service access to data across the enterprise. Such access has long been a goal of many enterprises, but few have achieved it. Only 15% of participants in Ventana Research’s Analytics and Data Benchmark Research say their organization is very comfortable allowing business users to work with data that has not been...
Read More
Topics:
Analytics,
data operations,
Analytics & Data,
AI and Machine Learning,
Data Intelligence,
Data Products,
Data Democratization
Cloud computing has had an enormous impact on the analytics and data industry in recent decades, with the on-demand provisioning of computational resources providing new opportunities for enterprises to lower costs and increase efficiency. Two-thirds of participants in Ventana Research’s Data Lakes Dynamic Insightsresearch are using a cloud-based environment as the primary data platform for analytics.
Read More
Topics:
Analytics,
AI,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning,
Data Intelligence
It is well known that data integration, transformation and preparation represent a significant proportion of the time and effort required in any analytics project. Traditionally, operational data platforms are designed to store, manage, and process data to support worker-, customer- and partner-facing operational applications, and data is then extracted, transformed, and loaded (or “ETLed”) into a separate analytic data platform, which is designed to store, manage, process, and analyze data....
Read More
Topics:
Analytics & Data,
Data Intelligence
I have previously written about the impact of intelligent operational applications on the requirements for data platforms. Intelligent applications are used to run the business but also deliver personalization, recommendations and other features generated by machine learning and artificial intelligence. As such, they require a combination of operational and analytic processing functionality. The emergence of these intelligent applications does not eradicate the need for separate analysis of...
Read More
Topics:
Analytics,
Artificial intelligence,
data platforms,
Analytics & Data,
Generative AI,
AI and Machine Learning