About the Analyst
Matt Aslett
Matt leads the expertise in Digital Technology covering applications and technology that improve the readiness and resilience of business and IT operations. His focus areas of expertise and market coverage include: analytics and data, artificial intelligence and machine learning, blockchain, cloud computing, collaborative and conversational computing, extended reality, Internet of Things mobile computing and robotic automation. Matt’s specialization is in operational and analytical use of data and how businesses can modernize their approaches to business to accelerate the value realization of technology investments in support of hybrid and multi-cloud architecture. Matt has been an industry analyst for more than a decade and has pioneered the coverage of emerging data platforms including NoSQL and NewSQL databases, data lakes and cloud-based data processing. He is a graduate of Bournemouth University.
Despite widespread and increasing use of the cloud for data and analytics workloads, it has become clear in recent years that, for most organizations, a proportion of data-processing workloads will remain on-premises in centralized data centers or distributed-edge processing infrastructure. As we recently noted, as compute and storage are distributed across a hybrid and multi-cloud architecture, so, too, is the data it stores and relies upon. This presents challenges for organizations to...
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data,
data operations,
data platforms,
AI and Machine Learning
I recently examined how evolving functionality had fueled the adoption of NoSQL databases, recommending that organizations evaluate NoSQL databases when assessing options for data transformation and modernization efforts. This recommendation was based on the breadth and depth of functionality offered by NoSQL database providers today, which has expanded the range of use cases for which NoSQL databases are potentially viable. There remain a significant number of organizations that have not...
Read More
Topics:
NoSQL,
Data,
data platforms,
Use Cases
The various NoSQL databases have become a staple of the data platforms landscape since the term entered the IT industry lexicon in 2009 to describe a new generation of non-relational databases. While NoSQL began as a ragtag collection of loosely affiliated, open-source database projects, several commercial NoSQL database providers are now established as credible alternatives to the various relational database providers, while all the major cloud providers and relational database giants now also...
Read More
Topics:
Analytics,
Data,
data platforms,
AI and Machine Learning
As businesses become more data-driven, they are increasingly dependent on the quality of their data and the reliability of their data pipelines. Making decisions based on data does not guarantee success, especially if the business cannot ensure that the data is accurate and trustworthy. While there is potential value in capturing all data — good or bad — making decisions based on low-quality data may do more harm than good.
Read More
Topics:
Data Governance,
Data Integration,
Data,
Digital Technology,
data lakes,
data operations,
Analytics & Data
I recently described the emergence of hydroanalytic data platforms, outlining how the processes involved in generating energy from a lake or reservoir were analogous to those required to generate intelligence from a data lake. I explained how structured data processing and analytics acceleration capabilities are the equivalent of turbines, generators and transformers in a hydroelectric power station. While these capabilities are more typically associated with data warehousing, they are now...
Read More
Topics:
Analytics,
Data Governance,
Data,
Digital Technology,
data lakes,
data operations,
data platforms,
Streaming Data & Events,
AI and Machine Learning
As I stated when joining Ventana Research, the socioeconomic impacts of the pandemic and its aftereffects have highlighted more than ever the differences between organizations that can turn data into insights and are agile enough to act upon it and those that are incapable of seeing or responding to the need for change. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized...
Read More
Topics:
Analytics,
Business Intelligence,
Data Integration,
Data,
data lakes,
data operations,
data platforms,
Streaming Data & Events,
AI and Machine Learning
I recently described how the data platforms landscape will remain divided between analytic and operational workloads for the foreseeable future. Analytic data platforms are designed to store, manage, process and analyze data, enabling organizations to maximize data to operate with greater efficiency, while operational data platforms are designed to store, manage and process data to support worker-, customer- and partner-facing operational applications. At the same time, however, we see...
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Data,
Digital Technology,
data platforms,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
Ventana Research recently announced its 2022 Market Agenda for Data, continuing the guidance we have offered for nearly two decades to help organizations derive optimal value and improve business outcomes.
Read More
Topics:
Data Governance,
Data Integration,
Data,
data lakes,
data operations,
data platforms,
Streaming Data & Events
Few trends have had a bigger impact on the data platforms landscape than the emergence of cloud computing. The adoption of cloud computing infrastructure as an alternative to on-premises datacenters has resulted in significant workloads being migrated to the cloud, displacing traditional server and storage vendors. Almost one-half (49%) of respondents to Ventana Research’s Analytics and Data Benchmark Research currently use cloud computing products for analytics and data, and a further...
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data
The need for data-driven decision-making requires organizations to transform not only the approach to business intelligence and data science but also accelerate the development of new operational applications that support greater business agility, enable cloud- and mobile-based consumption, and deliver more interactive and personalized experiences. To stay competitive, organizations need to prioritize the development of new, data-driven applications. As a result, many have been encouraged to...
Read More
Topics:
Analytics,
Cloud Computing,
Analytics & Data