It is a mark of the rapid, current pace of development in artificial intelligence (AI) that machine learning (ML) models, until recently considered state of the art, are now routinely being referred to by developers and vendors as “traditional.” Generative AI, and large language models (LLMs) in particular, have taken the AI world by storm in the past year, automating and accelerating the development of content, including text, digital images, audio and video, as well as computer programs and models. We are at the very early stages of identifying enterprise use cases for generative AI but expect adoption to grow rapidly and assert that through 2025, one-quarter of organizations will deploy generative AI embedded in one or more software applications. Vendors already well-established in AI and ML, such as IBM, are introducing products and services designed to help customers adopt reusable foundation models for generative AI alongside existing task-specific ML models.
IBM introduced its Watson brand to the world in 2010 when the natural language processing system appeared on the Jeopardy! game show, providing much of the public with an introduction to the real-life application of AI. In fact,
The demand for AI is strong. Nearly 9 in 10 participants in Ventana Research’s Analytics and Data Benchmark Research use or plan to adopt AI technology. Thousands of users and organizations have been experimenting with
Watsonx.ai provides a development environment running on the Red Hat OpenShift Container Platform for data scientists to train, validate, tune, and deploy foundation and ML models. Watsonx.ai provides access to open source models from Hugging Face as well as IBM-curated foundation models, along with tuning and prompt engineering capabilities in addition to functionality to address ML development and the MLOps life cycle. Watsonx.data is a data lakehouse environment available on IBM Cloud and Amazon Web Services, as well as on premises. It enables the storage of data in the Parquet format and provides support for Apache Iceberg for transactional consistency. Watsonx.data offers a choice of query engines with Apache Spark and Presto (complemented by IBM’s recent acquisition of Presto specialist Ahana), along with IBM’s own Db2 and Netezza. Watsonx.governance provides an environment to collaboratively manage, catalog and monitor AI models in the context of ethical concerns and regulatory requirements. It provides a suite of automated governance, risk and compliance tools and functionality for model monitoring and mitigating bias and drift, as well as explainability.
Watsonx is designed to be a comprehensive platform to support an organization’s strategic adoption of ML and foundation models, either standalone or in combination with IBM’s AI consulting services. Some of the functionality delivered in watsonx is new, particularly the foundation model capabilities. However, some is also available via other IBM products, such as Cloud Pak for Data, and it is not entirely clear if or how current users of IBM’s data processing, governance and AI development capabilities will access watsonx. Nevertheless, I recommend that any organization exploring the potential for generative AI include IBM’s watsonx in their evaluations. It is clear that IBM is taking a considered approach to the enterprise applicability of generative AI and can be a trusted partner for enterprises developing a strategy to take advantage of foundation models.
Regards,
Matt Aslett