Recently my colleague Tony Cosentino wrote an analyst perspective asserting that big data analytics will displace net promoter score (NPS) for more effectively measuring the entire customer experience. This prompted a response from Maxie Schmidt-Subramanian, asserting that big data and NPS aren’t the only ways to measure customer experience success. The main point of Tony’s piece, as I interpret it, is that NPS is just a number, but big data analytics can reveal much more about customer behavior and intentions, and it can link these to business outcomes. On the other hand Maxie argues that whether or not companies use NPS, when it comes to measuring the customer experience, they rely too much on surveys and no one metric does the entire job. While to a large extent I agree with both arguments, from a business perspective I don’t think either addresses three very important questions. The first is what actually is the customer experience? Second, how should it be measured? And third, what is the best use of big data in relation to customer experience?
I recently wrote about how to deliver EPIC customer experiences. This acronym includes four elements that go a long way toward defining a superior customer experience: It must be Easy (in availability of channels at times of the customer’s choice, and in use of technology), Personalized, In context (reflecting previous interactions) and above all Consistent (presenting the same timely information regardless of channel, whether assisted or self-service). That said, I believe that what is most important, for both customer and company, is the
Regarding the second question, various metrics are useful to assess different outcomes and the true customer experience. Our benchmark research into next-generation customer analytics illustrates this point, showing that companies use on average 11 metrics to assess customer-related activities: Among the most widely used, three are financial (adherence to budget, customer service costs and customer profitability), five are process-oriented (including call outcomes, performance vs. service level agreement and agent quality scores), and three are customer-specific (customer satisfaction, cost to serve and lifetime value). Perhaps in contrast to popular opinion, NPS ranked only fifth among customer-specific metrics. Our research also finds that improving customer experience is a top priority and driver for improving in 63 percent of organizations. Overall the results strongly suggest that most companies are undecided on how to measure the customer experience, but they seem to agree one metric isn’t enough.
That brings us to big data, and to analytics applied to it. Companies, especially large ones serving consumers, have always had a lot of customer data, including from CRM, ERP, billing and other business applications to interaction-related data in call recordings, email letters and other forms. Recently the volume and variety both have increased significantly because companies often have web, email, IVR recordings, text records, social media surveys, Web scripts, chat scripts, instant
My most recent research studies show that the majority of companies run their communication channels independently of each other and business groups chase their own goals so that there is little collaboration between them; these disconnections are among the reasons most customer experiences are far from EPIC. To improve we recommend that companies take the following steps. First and foremost in a multichannel world is understanding actual customer journeys, which I have written about. These journeys cross channels and business groups, extend throughout the customer life cycle and differ for individual products and services. Big data is needed to ingest and process the great volumes and many types of data involved, including all the data associated with a named customer, and analytics is necessary to produce analysis and metrics. These tools can help companies understand the outcomes of all those journeys and identify ways to improve them. In addition companies can benefit from using predictive analytics to examine past journeys and use them and scenarios to predict likely outcomes of current or future journeys; for example, if customers that go down a certain path often stop being customers, the company should find ways to influence them to take more productive paths.
Secondly, companies should rethink the metrics they use. Our customer analytics research finds that companies often claim to be trying to improve one aspect of service – for example, customer satisfaction – but measure another – say, average handling time. Once again metrics should align with desired outcomes: If cost control is important, measuring handling times makes sense as these have a direct correlation of costs, but if customer satisfaction is most important find metrics such as customer satisfaction measured over time and customer
Thus it is clear that companies need a balanced set of metrics that are directly related to what they are trying to achieve and are shared across the organization. The last point is very important and ties to Maxie’s point that “humans need a concept to rally around.” For example, I know of a company in which everyone’s compensation depended to some extent on customer satisfaction scores. Leaving aside whether they were measuring this objectively, it stopped employees from doing things that might result in bad customer experiences and thus lower customer satisfaction scores; one obvious example is selling customers the wrong product. One metric I endorse is customer lifetime value. This is an outcome metric that addresses both sides of the cost and revenue equation, is a strong indicator of customer loyalty and reflects both customer experience and employee performance.
To build on Tony’s and Maxie’s analyses let me finish with four observations:
Customer experience has become a key differentiator for many companies. However getting it right is not easy. So I recommend that organizations take into account my observations as they strive to create more loyal and thus more valuable customers.
Regards,
Richard J. Snow
VP & Research Director